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ETH Zürich.
gerard.orriols@math.ethz.ch

⇤Corresponding author

Resum (CAT)
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coincideixen. Això resol una conjectura proposada per Antunes i Freitas i
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Abstract (ENG)

We prove that there exist two distinct triangles for which the first, second and

fourth eigenvalues of the Laplace operator with zero Dirichlet boundary conditions

coincide. This solves a conjecture raised by Antunes and Freitas and suggested by

their numerical evidence. We use a novel technique for a computer-assisted proof

about the spectrum of an operator, which combines a Finite Element Method, to

locate roughly the first eigenvalues keeping track of their position in the spectrum,

and the Method of Particular Solutions, to get a much more precise bound of these

eigenvalues.
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A negative result for hearing the shape of a triangle

1. Introduction

The main result of the thesis is the following theorem.

Theorem 1.1. The first, second and fourth eigenvalues of the Laplace operator on an Euclidean triangle

with null Dirichlet boundary conditions are not enough to determine it up to isometry.

This is a conjecture proposed by Antunes and Freitas in [1], suggested by numerical evidence, but a
rigorous proof was required. The Dirichlet eigenvalues of the Laplace operator for a triangle ⌦ are real
numbers � such that there is a nonzero smooth function u defined on ⌦ and continuous on ⌦ such that(

��u = �u in ⌦,

u = 0 on @⌦.

It is a well known fact that the set of such � forms an increasing sequence 0 < �1 < �2  �3  · · · whose
only limit point is 1, and that the corresponding eigenfunctions uj form an orthonormal basis of L2(⌦).
The eigenvalues of a domain are closely related with its geometric properties, constituting an active area
of research called spectral geometry. A classical example of this relationship is Weyl’s law, which relates
the asymptotics of the eigenvalues to the volume of the domain, and a later result by McKean and Singer
states that the perimeter is also determined by the eigenvalues [20]. More results of this kind can be found
in [2] and [24]. Other results about how the geometry of a domain determines its spectrum can be found
in Henrot’s book [14].

The question of the determination of a domain given the set of its Laplace eigenvalues was posed by
Mark Kac in his famous paper “Can one hear the shape of a drum?” [16]. Since then, the answer has
been found to be negative in general; in particular, for euclidean polygons, the first example of a pair of
non-isometric polygons with the same spectrum is due to Gordon, Webb and Wolpert [13]. However, there
are positive results when we restrict the determination to a class of domains, the most successful of which
was found by Zelditch [25], who proved spectral determination for analytic domains with two classes of
symmetries.

Less is known about domains with more irregular boundaries, the simplest of which are polygons. In
the case of triangles, it has been proven that the whole spectrum of the Laplace operator determines the
shape of a triangle ([7], with a recent simple proof by [9]), and later Chang and DeTurck proved that only
a finite amount of eigenvalues, which depends on �1 and �2, is enough [5]. It is natural to try to improve
the result to only a finite and fixed amount of eigenvalues, answering the question “Can a human hear the
shape of a triangular drum?”.

Since the space of triangles up to isometries has dimension 3, we would expect that 3 eigenvalues
should be enough, and, if so, it is not clear which ones. Antunes and Freitas ([1]) conjectured that indeed
the three first eigenvalues �1, �2 and �3 do determine the shape of a triangle. Numerical evidence by
themselves seems to indicate that this is not the case for �1, �2 and �4, and in this paper we will prove
this fact (Theorem 1.1). This will give an example of an obstruction to determining the shape of a triangle
from a finite portion of its spectrum.

The proof of the theorem is computer-assisted: this means that first some topological, analytic and
geometric arguments are used to reduce the proof of the theorem to a finite but large number of compu-
tations, which are then verified by a computer. The computations are carried in a rigorous way, using the
technique of interval arithmetic which keeps track of propagated error bounds for all the computations.

An expanded version of this work, written jointly with Javier Gómez-Serrano and including the codes
for the computer verifications, will appear elsewhere and is available as a preprint [11].
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2. Structure of the proof of Theorem 1.1

By the scaling of the problem, we reduce our search to the set of triangles with a fixed base length (together
with additional conditions that ensure that we only consider one triangle for each similarity class); instead
of looking for all three eigenvalues �1, �2, �4 to be equal, we just require the quotients ⇠21 = �2/�1 and
⇠41 = �4/�1 to take the same value. Since the eigenvalues scale by r

�2 when the lengths of a triangle are
scaled by r , if two non-congruent triangles are found with the same quotients, there will be a scaling that
makes all three eigenvalues coincide.

Fixing the first two vertices of the triangle to be (0, 0) and (1, 0), we use the coordinates (cx , cy ) of
the third vertex to parametrize the search space. Our approach consists in using a topological argument
to show that in each of two disjoint regions in this parameter space there is a triangle in which ⇠21 and ⇠41
take the same prescribed value. More precisely, we claim that there are two distinct triangles for which
⇠21 = ⇠̄21 := 1.67675 and ⇠41 = ⇠̄41 := 2.99372.

Since rigorous calculations with the computer are done using interval arithmetic, we need a topological
technique to transform the closed condition into an open condition tolerates error intervals. For that purpose
we will use the Poincaré–Miranda theorem (see [19]):

Theorem 2.1. Given two continuous functions f , g : [�1, 1]2 ! R such that f (x , y) has the same sign

as x when x = ±1 and g(x , y) has the same sign as y when y = ±1, there exists a point (x , y) 2 [�1, 1]2

such that f (x , y) = g(x , y) = 0.

The regions that we will consider are two parallelograms around the points A = (0.63500, 0.27500) and
B = (0.84906, 0.31995), designed such that ⇠21 and ⇠41 have approximately a constant value each in a pair
of opposite edges. Using the computer we will verify that the functions ⇠21� ⇠̄21 and ⇠41� ⇠̄41 each have a
constant and opposite sign in opposite edges of the parallelogram, and hence by the theorem, together with
the well known domain continuity of eigenvalues, we will conclude that such two distinct triangles exist.

The vectors defining the parallelogram are obtained from the inverse of an approximation of the di↵er-
ential of the R2-valued funcion (⇠21, ⇠41) at the points A and B , scaled so as to minimize the computation
time. This setup is displayed in Figure 1 together with a plot of non rigorous contour lines of the eigenvalue
quotients.
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Figure 1: Numerical approximate plot of the quotients ⇠21 (discontinuous lines) and ⇠41 (continuous lines)
around the region of interest. The validated parallelograms around A and B are shown in green.
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The pointwise verification of the values ⇠21 and ⇠41 on the edges, which depends on an accurate
calculation of �i for i = 1, 2, 4, consists of two steps. The first one, treated in Section 3, is about showing
that the computed eigenvalues actually correspond to the ordered ones �1, �2 and �4; in order to do that,
we will prove a lower bound for �5 combining techniques from the Finite Element Method with rigorous
bounds linking the finite dimensional problem to the infinite dimensional one. The second step consists of
finding accurate values of four eigenvalues that lie below the threshold obtained in the first part, which
implies that they will indeed have to be the four lowest ones. This is done using the Method of Particular
Solutions and recent rigorous bounds based on the L2 norm of the boundary error of candidate approximate
eigenfunctions, explained in Section 4.

We emphasize the di�culty of finding the order of an eigenvalue, which is a global problem, compared
to the local easier task of refining its value. To the best knowledge of the author, this is the first computer-
assisted proof in which these two distinct, local and global methods are used to verify eigenvalues of an
operator.

The computer-verified enclosures of ⇠21 and ⇠41 explained above are only obtained for a finite set of
points. In order to check the hypotheses of the Poincaré–Miranda theorem in all the edges of the parallel-
ograms we will use an argument based on domain monotonicity for the Laplace eigenvalues to propagate
the bounds to a neighborhood of the verified points. The details of this part are explained in Section 5. We
now explain more about the implementation and execution of the automatic part of the proof.

2.1 Implementation of the computer-assisted proof

In the recent years, the application of calculations done by computers to mathematical proofs have become
more popular due to the increment of computational resources, but in order to make sure that their results
are rigorous, we need to control the errors that floating point arithmetic can accumulate. This is usually
done by means of interval arithmetic, in which the data that a computer stores for a real number is an
interval (two endpoints, or a midpoint and a radius) of real numbers, stored by two floating point numbers,
instead of just one.

Operations between intervals are implemented to return intervals which are guaranteed to contain every
possible result when the operands belong to the input intervals. For example, if [x ] = [x , x ] and [y ] = [y , y ]
are two intervals, their sum will can be given by the interval [x ] + [y ] = [x + y , x + y ] and their product by
[x ] · [y ] = [min{xy , xy , xy , xy}, max{xy , xy , xy , xy}]. The same rule applies to function implementations:
a function f evaluated on [x ] should return an interval containing every f (x) for x 2 [x ]. We refer to
the book [23] for an introduction to validated numerics, in which most of the techniques used here are
explained, and to [10] for a more specific treatment of computer-assisted proofs in PDE.

The validated computations are performed using the rigorous arithmetic library Arb, developed by
Fredrik Johansson [15], which can be found at http://arblib.org. Other non-rigorous computations
are made using common libraries such as ALGLIB or Boost. The validation of one of the sides of a
parallelogram can use approximately from 500 to 2000 points, and the total running time can take from 4
to 14 hours in 120 parallel machines, approximately. These benchmarks are greatly improved in [11] thanks
to changes described throughout the text.

3. Separation of the first four eigenvalues

In order to find a rigorous lower bound for the fifth eigenvalue of a triangle we will use a recent bound
found by Liu [17], which is similar to the one in [6] but simplifies the hypotheses and improves the
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constant. Both use the non-conforming Finite Element Method of Crouzeix–Raviart; other rigorous bounds
with conforming finite elements were explored, like [18], but the bound is worse and the method is harder
to implement with validated numerics because its mass matrix is not diagonal.

The Crouzeix–Raviart finite-element method uses a triangulation of the domain ⌦, which in our case
we will take to be the trivial triangulation given by N

2 triangles with sides equal to 1/N of the original
one and similar to it. The basis functions are indexed by the interior edges of the triangulation: if E is a
common edge of triangles T1, T2, the basis function  E is the unique function supported on T1 [T2 such
that restricted to each triangle is a�ne, takes the value 1 in the midpoint of E and the value 0 in the
midpoints of the other edges of T1 andT2.

We define the coe�cients of the sti↵ness and mass matrices A = (aEF ), B = (bEF ) by the bilinear
forms

aEF =

Z

⌦
r E ·r F , bEF =

Z

⌦
 E F .

For our choice of triangulation, B is simply a multiple of the identity 2|⌦|I/(3N2), whereas A is a
sparse matrix. This will allow us to work with a matrix eigenvalue problem for the symmetric matrix
M = B

�1
A instead of a generalized one. The main result that we will use is the following ([17, Thm. 2.1

and Rmk. 2.2]):

Theorem 3.1. Consider a polygonal domain ⌦ with a triangulation so that each triangle has diameter at

most h. Let �k be the k-th eigenvalue of ⌦ and �k,h the k-th eigenvalue of the Crouzeix–Raviart discretized

problem for ⌦. Then
�h,k

1 + C 2
h�h,k

 �k , (1)

where Ch  0.1893h is a constant.

In order to be able to deal with approximate eigenvalues we will need in addition the following lemma
from [21, Thm. 15.9.1].

Lemma 3.2. Let (�̃h, ũh) be an approximate algebraic eigenpair such that �̃h is closer to some �h than

to any other discrete eigenvalue. Suppose that the coe�cient vector ũh is normalised with respect to B,

kBũhkB�1 = kũhkB = 1. Then the algebraic residual r := Aũh � �̃hBũh satisfies

|�h � �̃h|  krkB�1 .

Remark 3.3. We can combine Theorem 3.1 with Lemma 3.2 using the monotonicity of (1), using �h,k �
krkB�1 as a lower bound of �h,k instead.

It is easy to obtain estimations �̃h with a very small residual; the hardest part here before applying the
theorem is to check that they have indeed the correct index, i.e., that they are closer to the appropriate �h
than to any other discrete eigenvalue. Thus we need to control the whole spectrum of the discrete problem.

More precisely, in order to get a lower bound for �5 we need to separate the first 5 eigenvalues from
the rest so that we can control them, and in order to do that we will perform Givens rotations until the
intervals provided by Gershgorin’s theorem can be separated in two disjoint components, one containing
the 5 smallest eigenvalues and the other containing the rest. If this holds, then the strong version of
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Gershgorin’s theorem will guarantee an upper bound for �h,5. Therefore, provided that the residuals are all
very small and that all approximate eigenvalues are di↵erent (which happens in our setting), Lemma 3.2
will guarantee that there are 5 distinct discrete eigenvalues below the upper bound and therefore they will
be forced to have the correct indices.

This allows us to verify �h,5 with an error only depending on its residual, and using Remark 3.3, get
a lower bound of �5. Therefore, the first four eigenvalues can be separated just by checking that they are
distinct and smaller than this lower bound.

The Givens rotations must be applied in a rigorous way using interval arithmetic, although the angle of
the rotation is chosen in a non rigorous way. The rotations are performed by steps: in each step, several
iterations are performed to reduce the upper bound of the lowest 5 Gershgorin intervals below a fixed
threshold and to increase the lower bound of the highest Gershgorin intervals above another threshold.
These thresholds are improved at each step progressively (the former is reduced, the latter is increased).

The iterations consist in making a Givens rotation to set to zero each o↵-diagonal entry whose absolute
value exceeds the maximum Gershgorin radius allowed (i.e. the di↵erence between the diagonal value and
the current threshold) divided by the number of o↵-diagonal entries. This heuristic tolerates small absolute
values in o↵-diagonal entries and stops when the Gershgorin radius reached is small enough.

The execution of this algorithm for our data required a subdivision into N
2 triangles, for N between 18

and 21, and had a running time of between 15 and 45 minutes at a precision of 1024 bits. After the
presentation of the thesis, with Gómez-Serrano, we simplified this part and reduced its computation time
by showing that we can bound explicitly the di↵erence between the exact diagonal form of the matrix
and a nonrigorous diagonalization, provided that it is precise enough. The argument is based on stability
bounds of an application of the Gram–Schmidt orthogonalization process to the proposed almost-orthogonal
approximate eigenvector basis (see [11] for more details).

4. Rigorous eigenvalue bounds for individual trian-

gles

Our approach to find tight bounds for the eigenvalues of triangles uses the Method of Particular So-
lutions (MPS), introduced by Fox, Henrici and Moler in [8] and more recently revived by Betcke and
Trefethen [4]. In this method, a function u is written as a linear combination of functions �i (1  i  N)
that satisfy pointwise the equation (�+ �)�i = 0 for a fixed �. The coe�cients are chosen to optimize
the proximity of the function to the eigenspace for the actual eigenvalue �j , in a sense made precise in [4],
and this is measured by the least singular value of a certain matrix that involves the values of u at discrete
points of the boundary @⌦. This parameter is minimized with respect to � by using a golden ratio search.
This provides a candidate � 2 R and coe�cients ci for which u(x) =

PN
i=1 ci�i (x) can be computed with

arbitrary precision.

The functions that we will use for the MPS consist of two types: the first ones are of the form �(x) =
Y0(

p
�|x � x0|), for x0 a point outside ⌦. The second type of functions are parametrized by a vertex of

the triangle and a positive integer j , and take the form  j(r , ✓) = Jj↵(
p
�r) sin(j↵✓), where (r , ✓) are the

polar coordinates of the point with respect to a vertex in the triangle whose total angle is ⇡/↵, and ✓ is
measured from an adjacent side. The first kind of functions allow us to approximate the function in the
interior of the triangle and near the sides, while the second kind gives the correct asymptotic behavior of
the solution near the vertices of the triangle.
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We must mention that, shortly before the submission of the thesis, a remarkable paper by Gopal and
Trefethen ([12]) introduced a new basis of functions that o↵ers root-exponential convergence, meaning
that with a lot fewer functions one could obtain a better fitting in much less time. In the updated version
of this work [11], Gómez-Serrano and the author use this so-called lightning Laplace solver method to
improve the total running time from around a thousand hours to just about 42.

The main tool that we will use to find rigorous bounds for eigenvalues is the L2 bound given by Barnett
and Hassell [3]. However, their method is optimized for high eigenvalues, so we will have to adapt some of
the steps to our case of small eigenvalues. We summarize the main results that we will use. Let ⌦ be a
triangle and u 2 C

2(⌦) be nonzero such that (�+ �)u = 0. Consider the tension

t[u] =
kukL2(@⌦)

kukL2(⌦)
.

Let �j , uj be the sequence of eigenvalues and eigenfunctions of ⌦, satisfying (�+ �j)uj = 0 with Dirichlet
null boundary conditions. Let vj be the normal derivative of uj , defined on @⌦. We define the operator

A(�) =
X

�j

vjhvj , ·i
(�� �j)2

,

and its decomposition as a sum of three:

Anear(�) =
X

|���j |
p
�

vjhvj , ·i
(�� �j)2

,

Afar(�) =
X

�/2�j2�, |���j |>
p
�

vjhvj , ·i
(�� �j)2

,

Atail(�) =
X

�j<�/2 or �j>2�

vjhvj , ·i
(�� �j)2

,

where h·, ·i is the standard inner product on L
2(@⌦). This operator is useful because its norm is controlled

by the tension (see [3, §3]):
t[u]�2  kA(�)k. (2)

Moreover we have the following explicit bounds from [3, Lem. 4.1] and [3, Lem. 4.2]:

kAfar(�)k  C1, (3)

kAtail(�)k  C2�
�1/2, (4)

with constants C1, C2 given below. For the near term, since we are working with very low eigenvalues,p
� is actually small enough that only the summand with �j = � appears:

kAnear(�)k =
kvjk2L2(@⌦)

(�� �j)2
. (5)
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For convex domains, like in our case, Section 6 of [3] o↵ers explicit bounds for the constants. By
keeping track of all the constants used in their derivation, it is not hard to see that for a triangle with
inradius ⇢, one can take C1,C2 < 28(1 + ⇢)/⇢.

Putting (2)–(5) together we have

t[u]�2 
kvjk2L2(@⌦)

(�� �j)2
+ 7C⌦(1 + ��1/2). (6)

Finally, recall Rellich’s formula [22]:

Z

@⌦
(@nuj)

2
x · n ds = 2�j .

For our choice of origin of coordinates, this just gives us kvjk2L2(@⌦) = 2�j/⇢. Inserting this into (6), we
have proved:

Proposition 4.1. The distance d from � to the spectrum of the Laplacian on ⌦ can be bounded above by

t[u]�2  2�̃j
⇢d2

+ 7C⌦(1 + ��1/2),

where �̃j is an upper bound for �j .

Thus we must obtain a rigorous upper bound for the L
2 norm of the candidate eigenfunction on the

boundary of ⌦, and a rigorous lower bound for its interior L2 norm, in order to use the previous proposition
and deduce the existence of an actual eigenvalue near the candidate one.

4.1 Upper bound of the boundary norm

This computation is done by dividing the sides of the triangle into many small intervals, in positions given
by Chebyshev nodes, and in each of them performing a validated computation using Taylor series: the
Taylor polynomial of the function at the center point is evaluated in the whole interval, and to this value
the remainder of Taylor’s theorem is added. A validated enclosure for this remainder consists of the Taylor
polynomial of the function at the whole interval evaluated in the whole interval.

When this computation exceeds a threshold in absolute value (in our case, 10�5), the interval is split in
half and the validating function is called recursively for the two halves. In the end, all contributions from
all intervals are added up to get the L

2 bound. This calculation takes approximately 10 minutes per point
at a precision of 128 bits, using a total of 317 charge basis functions and 15 vertex basis functions.

4.2 Lower bound of the interior norm

This bound is obtained by using a grid of 8⇥8 small triangles that occupy a smaller triangle of side 0.8 times
the original one (hence the area of each triangle is 0.01|⌦|). Figure 2 displays the grid for the plot of the
first and the fourth eigenfunction of triangle B . In each of the triangles a lower bound of the absolute value
of u is obtained using the same method as above (Taylor series bounds and splitting recursively).
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Whenever we obtain a validated estimate, say u ≥ a > 0, on ∂T , where T is one of the small triangles
in the grid, we can extend this inequality to the whole T by using the minimum principle. More precisely,
it is enough to show that −∆u ≥ 0 in T to get that the minimum of u is in ∂T and hence is at least a.
If this does not hold, it means that λu = −∆u < 0 at some point inside T . This means that the open
set U = {u < 0} ∩ T ⊂ T has λ as a Dirichlet eigenvalue, and hence by the Faber–Krahn inequality, we
get a lower bound for its area:

0.01|Ω| = |T | ≥ |U| ≥
πj2

0,1

λ
>

18.1684

λ
.

This is a contradiction by orders of magnitude for our triangles (|Ω| ≤ 0.25 and λ < 1000).

The calculation of this part also takes approximately 10 minutes per point at a precision of 128 bits,
using a total of 317 charge basis functions and 15 vertex basis functions.

(a)

(b)

Figure 2: Grid used to validate a lower bound for ‖u‖L2(Ω) for triangle B, with (a) the first eigenfunction
and (b) the second eigenfunction plotted on top.

5. Extension of the bounds to a region of triangles

Our goal is to propagate the rigorous bounds of an eigenvalue of the Laplacian of a triangle with Dirichlet
boundary conditions to a neighborhood of triangles. In the original version of the thesis, this was done
using a continuity argument based on the fact that an operator norm bound of the difference of two
compact operators (in this case, the inverse of the Laplacian and of a deformed version of it associated to a
neighboring triangle) translates into a bound of the difference of all their respective eigenvalues. We later
realized that obtaining an explicit bound for the difference of such operators was harder than we thought,
and discovered another method which is conceptually much simpler and surprisingly propagates the bound
into longer intervals. Therefore we will just sketch this simpler method, and refer to [11] for more details.
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Lemma 5.1. Let T and T
0
be two triangles, whose vertices are A = (0, 0), B = (1, 0), and C = (cx , cy ),

C
0 = (c 0x , c

0
y ) respectively (cy , c 0y > 0). Consider the cross products p =

�!
AC ⇥

��!
AC

0 = cxc
0
y � cyc

0
x and

q =
�!
BC ⇥

��!
BC

0 = (cx � 1)c 0y � cy (c 0x � 1). Then,

(i) if both p, q < 0, there is a homothety of T
0
by a factor 1� p/c 0y that contains T ;

(ii) if both p, q > 0, there is a homothety of T
0
by a factor 1 + q/c 0y that contains T .

Proof. The proof is very similar in the two cases, so we will only do it for the first one. We want to find
the homothety of scale 1 + r that keeps the vertex B of triangle T

0 fixed and such that the image of its
opposite side contains vertex C of T . The condition becomes simpler once we apply an inverse homothety
to T and T

0, so that it results in the points A, C 000 = (C + rB)/(1 + r), C 0 being aligned. The solution
is r = �p/c 0y , which is positive by our condition. Moreover, triangle T lies below this homothety of T 0

because the vectors
�!
BC and

��!
BC

0 are in the correct orientation due to the condition q < 0. This su�ces
to check that T is contained in this homothety.

Lemma 5.2. With the same notation as in Lemma 5.1,

(i) if p > 0 and q < 0, then T ⇢ T
0
;

(ii) if p < 0 and q > 0, there is a homothety of T
0
by a factor cy/c 0y > 1 that contains T .

Proof. In the first case, the conditions on the signs of the cross products of the side vectors is equivalent
to T being contained in T

0. In the second case, the relative orientations of the sides guarantee that a
homothetic triangle to T

0 of the same height as T whose top vertex coincides with C will contain T , and
the ratio of this homothety is clearly cy/c 0y .

Using the reversed inclusions from the previous lemmas, an easy but tedious calculation which distin-
guishes the two cases above leads to the following result, that can be applied directly to propagate a bound
on ⇠21 or ⇠41 to a neighborhood of a triangle.

Lemma 5.3. Let T be a triangle as above, and consider perturbations of the third vertex of the form C+tv

defining triangles T
(t)
, for t 2 [�`, `], where v = (vx , vy ). Let �n, �

(t)
n be the n-th Dirichlet eigenvalues

of triangles T , T
(t)
, respectively, and define ⇠(t)n1 as the obvious eigenvalue quotient. Then we distinguish

two cases depending on pv =
�!
AC ⇥ v and qv =

�!
BC ⇥ v:

(i) if pv and qv both have the same sign, then for all t 2 [�`, `]

|⇠(t)n1 � ⇠n1|  ⇠n1

"✓
1 + `

|pv |
cy � `|vy |

◆2✓
1 + `

|qv |
cy � `|vy |

◆2

� 1

#
;

(ii) if pv and qv have di↵erent signs, then for all t 2 [�`, `]

|⇠(t)n1 � ⇠n1|  ⇠n1

"✓
cy

cy � `|vy |

◆2

� 1

#
.
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